4 resultados para evoked potential

em University of Queensland eSpace - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Augmented visual feedback can have a profound bearing on the stability of bimanual coordination. Indeed, this has been used to render tractable the study of patterns of coordination that cannot otherwise be produced in a stable fashion. In previous investigations (Carson et al. 1999), we have shown that rhythmic movements, brought about by the contraction of muscles on one side of the body, lead to phase-locked changes in the excitability of homologous motor pathways of the opposite limb. The present study was conducted to assess whether these changes are influenced by the presence of visual feedback of the moving limb. Eight participants performed rhythmic flexion-extension movements of the left wrist to the beat of a metronome (1.5 Hz). In 50% of trials, visual feedback of wrist displacement was provided in relation to a target amplitude, defined by the mean movement amplitude generated during the immediately preceding no feedback trial. Motor potentials (MEPs) were evoked in the quiescent muscles of the right limb by magnetic stimulation of the left motor cortex. Consistent with our previous observations, MEP amplitudes were modulated during the movement cycle of the opposite limb. The extent of this modulation was, however, smaller in the presence of visual feedback of the moving limb (FCR omega(2) =0.41; ECR omega(2)=0.29) than in trials in which there was no visual feedback (FCR omega(2)=0.51; ECR omega(2)=0.48). In addition, the relationship between the level of FCR activation and the excitability of the homologous corticospinal pathway of the opposite limb was sensitive to the vision condition; the degree of correlation between the two variables was larger when there was no visual feedback of the moving limb. The results of the present study support the view that increases in the stability of bimanual coordination brought about by augmented feedback may be mediated by changes in the crossed modulation of excitability in homologous motor pathways.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Clinically healthy mixed breed dogs (n = 20) were used to determine if a Tris (tromethamine)-buffered test solution, Otinide((R)) (Trademark of Dermcare-Vet Pty-Ltd, Australia), containing disodium ethylenediamine tetraacetic acid (EDTA; 1.21 g/L) and polyhexamethylene biguanide (PHMB; 0.22 g/L) caused ototoxicity or vestibular dysfunction. The dogs were randomly assigned to either a control group (group A, n = 10) receiving saline, or a treatment group (group B, n = 10) receiving the test solution. Phase 1 of the study consisted of applying 5.0 mL of saline to both ears of the control group (group A) and 5 mL of test solution to both ears of the test group (group B), for 21 days. A bilateral myringotomy was then performed on each dog under deep sedation. Phase 2 of the study then consisted of applying 2.0 mL of the saline to both ears of the control group (group A) and 2.0 mL of the test solution to both ears of the test group (group B), for 14 days. Throughout the study, dogs were examined for clinical health, and underwent otoscopic, vestibular and auditory examinations. The auditory examinations included brainstem auditory evoked potential (BAEP) threshold and supra-threshold assessments using both click and 8 kHz tone burst stimuli. The absence of vestibular signs and effects on the BAEP attributable to the test solution suggested the test solution could be applied safely to dogs, including those with a damaged tympanic membrane.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The behavior and stability of motor units (MUs) in response to electrical stimulation of different intensities can be assessed with the stimulus-response curve, which is a graphical representation of the size of the compound muscle action potential (CMAP) in relation to stimulus intensity. To examine MU characteristics across the whole stimulus range, the variability of CMAP responses to electrical stimulation, and the differences that occur between normal and disease states, the curve was studied in 11 normal subjects and 16 subjects with amyotrophic lateral sclerosis (ALS). In normal subjects, the curve showed a gradual increase in CMAP size with increasing stimulus intensity, although one or two discrete steps were sometimes observed in the upper half of the curve, indicating the activation of large MUs at higher intensities. In ALS subjects, large discrete steps, due to loss of MUs and collateral sprouting, were frequently present. Variability of the CMAP responses was greater than baseline variability, indicating variability of MU responses, and at certain levels this variability was up to 100 mu Vms. The stimulus-response curve shows differences between normal and ALS subjects and provides information on MU activation and variability throughout the curve.